Total No. of Questions—12]

[Total No. of Printed Pages—7

Seat	
No.	

[4162]-105

S.E. (Civil) (First Semester) EXAMINATION, 2012

GEOTECHNICAL ENGINEERING

(2008 **PATTERN**)

Time: Three Hours

Maximum Marks: 100

- **N.B.** :— (i) Answer three questions from Section I and three questions from Section II.
 - (ii) Answers to the two Sections should be written in separate answer-books.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (v) Assume suitable data, if necessary.

SECTION I

1. (a) What are the various index properties of soil? Explain the significance of each. [6]

(<i>b</i>)	What is Stokes' Law ? What are the limitations of Stokes'								
	law ? [6]								
(c)	Sketch the plasticity chart and show thereon a soil with								
	W_L = 55%, W_P = 20%. Assign its IS classification. [6]								
Or									
(a)	Explain the terms with the help of three-phase diagram,								
	void ratio, degree of saturation, water content and bulk unit								
	weight. [6]								
(<i>b</i>)	Draw a typical particle size distribution curve and for a well								
	graded, uniformly graded and gap graded soil. [6]								
(c)	The grading curve of a soil gives the effective size as								
	0.16 mm, D_{30} = 0.4 mm and D_{60} = 0.3 mm. Find Cu and								
	Cc. Classify the soil. [6]								
(a)	What is Laplace equation? Derive it from the first principles								
	for two-dimensional flow. [6]								
(<i>b</i>)	Explain the variable head method to determine the permeability								
	of soil. Derive the equation used. [6]								

[4162]-105

2.

3.

(c) A soil profile consists of layers of thickness equal to 2 m, 3 m and 4 m with coefficient of permeability equal to 2×10^{-4} cm/sec, 3.5×10^{-3} cm/sec and 2×10^{-3} cm/sec. Find the equivalent coefficient of permeability, when the flow is perpendicular to the layers. [4]

Or

- **4.** (a) What is flow net? What are the properties of flow net? [6]
 - (b) What are the various factors affecting permeability? [6]
 - (c) In order to compute the seepage loss through the foundation of a cofferdam flow nets were constructed. The results of the flow net study gave $N_f=5$ and $N_d=15$. The head of water lost during seepage was 6 m. If the coefficient of permeability of soil $K=5\times 10^{-4}$ m/min. Compute the seepage loss per meter length of dam per day. [4]
- **5.** (a) How will you ensure compaction control at the time of construction of an earthen dam ? [5]
 - (b) Explain Boussinesq's equation for estimation of vertical stress below the soil mass. [4]

(c) In a standard proctor test the following observations were recorded:

Bulk density Water content Sample No. (kg/m^3) (%)01 1978 11.3 02 2083 12.2 03 2147 13.0 2208 04 14.2 05 2188 15.1 06 2147 16.4

Plot the moisture density curve and find MDD and OMC. [7]

Or

- **6.** (a) What is compaction curve? Give its salient features. What is zero air void line? [5]
 - (b) What is pressure bulb? Explain its use. [5]
 - (c) A water tank is constructed by a ring foundation having outer diameter of 8 m and inner diameter of 6 m. The uniform load intensity on foundation is 200 kN/m². Determine the vertical stress caused by the water tank at a depth of 4 m below the centre of the foundation. [6]

SECTION II

7.	(a)	How	would	you	find	the	shear	str	ength	of	soil	with	the
		help	of ur	conf	ined	com	pressi	on	test	? \	What	are	its
		limita	ations ?	•									[6]

(b) State the advantages and disadvantages of triaxial test. [6]

(c) For a soil with $\phi = 20^{\circ}$, $C = 40 \text{ kN/m}^2$, what will be the major principle stress at failure, if cell pressure is 120 kN/m^2 .

Or

- 8. (a) What is sensitivity? How are soils classified based on sensitivity?
 - (b) State and explain Coulomb's law of shear strength. How is it affected by the pore pressure? [6]
 - (c) An in-situ vane shear was conducted in a clay at the bottom of a bore hole. A torque of 153 N-m was required to shear the soil. What was the undrained strength of clay? The vane was 100 mm in diameter and 150 mm long. [6]

9.	(<i>a</i>)	Explain the terms: Active earth pressure, Passive earth pressure								
		and Earth pressure at rest. [6]								
	(<i>b</i>)	What is stability number? What is its use? [4]								
	(c)	Derive the expression for the critical height of a vertical cut								
		that can stand unsupported in a C- ϕ soil. [6]								
		Or								
10.	(a)	Draw a neat sketch to show:								
		(i) Toe failure								
		(ii) Face failure and								
		(iii) Base failure. [5]								
	(<i>b</i>)	Explain finite and infinite slopes with suitable examples. [5]								
	(c)	A retaining wall with a vertical smooth back is 8 m high.								
		It supports a cohesionless soil with $\gamma = 19 \text{ kN/m}^3$, $\phi = 30^\circ$.								
		The surface of soil is horizontal. Determine the thrust								
		the wall. [6]								
11.	(a)	What are different modes of failure of rocks? Give examples								
		of each. [8]								
	(<i>b</i>)	What are different index properties of rocks? How are they								
		determined? Explain any two. [8]								
F 4 4 5 5										

12.	Write	short	notes	on	
14.	*****	SHULL	11000	OII	

[16]

- (a) Beam bending test
- (b) Unconfined compression test
- (c) Ring shear test
- (d) Hardness of rock.